最新版PHITSコードの特徴 Features of the latest version of the PHITS code

 日本原子力研究開発機構、2. 高度情報科学技術研究機構
高エネルギー加速器研究機構、4. 理化学研究所、5. 東京工業大学 佐藤 達彦¹、仁井田 浩二²、松田 規宏¹、橋本 慎太郎¹、岩元 洋介¹
野田 秀作¹、小川 達彦¹、中島 宏¹、深堀 智生¹、奥村 啓介¹、甲斐 哲也¹ 岩瀬 広³、古田 琢哉⁴、千葉 敏^{1,5}

粒子・重イオン挙動解析コードPHITSは、原子力分野のみならず工学・医学・理学の多様な 分野で国内外800名以上のユーザーに幅広く利用されている。本稿では、2012年12月に公開さ れた最新版PHITS (version 2.52)の特徴について解説する。

1. はじめに

PHITS(Particle and Heavy Ion Transport code System)は、NMTC/JAM [1]を基に 開発された、任意形状の3次元体系内におけ る放射線挙動を解析可能な汎用モンテカルロ 計算コードである。原子力分野で重要となる 低エネルギー中性子や光子、医療分野や宇宙 開発分野で重要となる高エネルギー陽子や重 イオンなど、幅広いエネルギー範囲を持つ 様々な放射線に適用可能なため、工学・医学・ 理学の多様な分野で幅広く利用されている。

現在のPHITS開発チーム体制を図1に示 す。基本的な開発は、日本原子力研究開発機 構(原子力機構)、高度情報科学技術研究機構 (RIST)、高エネルギー加速器研究機構 (KEK)の3機関共同研究契約に基づいて実 施し、そのとりまとめを原子力機構が行って いる。それ以外に、国内では九州大学、理化 学研究所及び宇宙航空研究開発機構 (JAXA)、国外ではスウェーデンのチャルマ ース工科大学及びフランスのCEAと、 PHITS開発及びその応用に関する共同研究 を結んでいる。PHITSの配布は、RIST原子 力コードセンター[2]、OECD/NEAデータ バンク[3] 及びRSICC [4] を介して行っ ており、基本的に無償である。ただし、原子 カコードセンターを介して入手する際は、手 数料が必要となる。また、国内の研究機関に 所属する研究者は、原子力機構が主催する PHITS講習会(出張講習会含む)に参加する ことにより、手数料も無料で入手することが できる。これらの普及活動の結果、PHITS は、公開から約2年半でそのユーザー数が国 内外合わせて800名を超えるに至った。

PHITSコードの概要やその入手方法に関 する詳しい情報は、ホームページ[5]、マ ニュアル[6]、レビュー論文[7]などをご 参照いただくとして、本稿では、2012年12月 に公開された最新版PHITS (version 2.52) の特徴について解説する。

2. PHITS2.52の特徴

PHITS2.52は、2012年12月に公開された最 新版PHITSパッケージであり。従来、原子力 コードセンターなどに登録されていた PHITS2.24パッケージと比べて、計算機能や 精度、ユーザーサポートツールなど、あらゆ る面が改良されている。PHITS2.24と比較 したPHITS2.52の特徴をコード自体及び パッケージの特徴に分類して表1及び2に示 す。以下、いくつかの項目に関して、その詳 細を解説する。

図1 PHITS開発体制

項目	概要
最新の核内カスケード	中間領域エネルギーの核反応に対する計算精度を高めるため、最
モデルの組込	新の核内カスケードモデルINCL[12]及びINC-ELF[13]を組み込ん
(詳細は2.1参照)	だ。
統計マルチフラグメン	核反応により生成する残留核収率の計算精度を高めるため、静的
テーションモデルの組込	過程に統計マルチフラグメンテーションモデル(SMM)[16]を組み
(詳細は2.2参照)	込んだ。
巨大共鳴反応断面積の 改訂 (詳細は2.3参照)	光核反応データライブラリ JENDL/PD- 2004 [17]に基づいて、光 核反応断面積を改訂した。
新しい反応断面積計算 モデルの組込 (詳細は2.4参照)	理研などで開発された核子- 原子核および原子核- 原子核反応断 面積計算モデルKurotama[18]を組み込んだ。
メモリ共有型並列計算	OpenMPを利用したメモリ共有型並列計算機能を導入し、メモリ
機能の導入	分散型並列と組み合わせたハイブリッド並列計算や、汎用PCでの
(詳細は2.5参照)	並列計算を可能とした。
統計誤差計算方法の改	ヒストリー間の分散を計算するタリーでは相対標準誤差を、それ
良と再開始計算機能の追	以外のタリーでは相対標準偏差を統計誤差として出力するように
加	全てのタリーを改良した。また、統計が足りなかった場合などに対
(詳細は2.6参照)	応するため、一度終了した計算を再開始する機能を追加した。

表 PHITS2 24と比較したPHITS2 52コー

項目	概要
残留放射能計算機能の 追加 (詳細は2.7参照)	残留放射能計算コードDCHAIN-SP[19]をPHITSパッケージに 組み込むとともに、PHITSからDCHAIN-SPの入力ファイルを自動 で作成する[t-dchain]タリーを作成した。
電子・光子輸送計算ア ルゴリズムの改良 (詳細は2.8参照)	電子の阻止能をそのカットオフエネルギーに応じて変化させ、高 エネルギー電子の挙動がカットオフエネルギーに依存しないよう にした。また、光子や電子の輸送計算でもイベントジェネレータと なるよう改良した。
ユーザー定義タリーの 導入	多様なニーズに応じるため、ユーザーが各自の必要とする物理量 を自由にスコアするための[t-UserDefined]タリーを作成した。
∂線生成機能の組込	荷電粒子の飛跡周辺にノックアウトされる電子(δ線)の生成を 考慮できるように改良し、エネルギー付与の空間的な分布をより精 度よく計算可能とした。
DPA 計算機能の改良 (詳細は文献 [26])	放射線による材料損傷の指標となるDPAを計算する際、クーロン 散乱の効果を適切に考慮できるように改良し、重イオン照射に対し ても精度よくDPAを計算できるようにした。
バグ修正と高速化	等方照射線源などに関するバグを修正し、JQMDなど一部のルー チンを高速化した。

表2 PHITS2.24と比較したPHITS2.52パッケージの特徴

項目	概要
インストーラの整備	Windows及びMac用のインストーラを作成し、インストール フォルダを指定するのみでインストールが完了するようにした。
実行シェルの整備	Windowsでは右クリックの「送る」コマンドより、Macではア イコンのドラッグ&ドロップによりPHITSを実行可能とした。
核データライブラリの改 訂 (詳細は2.9参照)	JENDL-4.0[20]に基づいて作成した中性子核データライブラ リを改訂するとともに、光子及び電子の原子データライブラリを 整備した。
講習会用資料の改訂 (HPよりダウンロード可)	基礎実習(ジオメトリ・タリー・パラメータ設定)、応用実習 (便利な機能・分散低減・ボクセルファントム)、総合実習用の 資料をそれぞれ作成した。
奨励設定ファイルの整備 (HPよりダウンロード可)	ユーザーがPHITS入力ファイルを作る際の参考とするため、 様々な使用目的に合わせたPHITSパラメータの奨励設定を決定 し、そのサンプル入力ファイルを作成した。
マニュアルの改訂 (HPよりダウンロード可)	マニュアルの不備を大幅に改訂し、原子力分野以外のユーザー でも理解できるようにした。
便利なツールの整備 (HPよりダウンロード可)	PHITSで作成した3次元体系や放射線挙動をアニメーション 化するツールなど、PHITSを使った便利な機能の紹介とその使 用方法の解説を作成した。

2.1 最新の核内カスケードモデルの組込

核反応モデルは、放射線挙動解析計算コー ドの「肝」とも言うべき部分であり、この精 度が計算コード全体の優劣を決定すると言っ ても過言ではない。PHITSは、量子分子動力 学模型に基づいて全ての核子間相互作用を解 析する核反応モデルJQMD [8]や、核内カ スケード模型に基づいて数GeV以上の共鳴状 熊を丁寧に再現する核反応モデルJAM [9] を世界に先駆けて導入したため、重イオン入 射や高エネルギー核子入射核反応に対する計 算精度は良い。しかし、PHITS2.24では、数 10MeVから数GeVの核子入射に対して、古い タイプの核内カスケード模型Bertiniに改良 を加えたモデル [10] を初期設定として採用 していたため、その計算精度は最新のモデル と比較してあまり良くないことが報告されて いた [11]。

そこで、PHITS2.52には、中間領域エネル ギーに対する最新の核内カスケード模型を2 つ、それぞれ独立して組み込んだ。1つはフ ランスCEAが中心となって開発している INCL [12] で、もう1つは九州大学で開発 しているINC-ELF [13] である。どちらも、 近年注目されているコアレッセンス模型を組 み込んでおり、従来のカスケード模型では全 く再現できなかった高エネルギーフラグメン ト生成を再現することができる。例として、 JAM、INCL、INC-ELFモデルでそれぞれ計 算した陽子入射に対する中性子生成及び重陽 子生成反応断面積を図2に示す。図より、中 性子生成に対しては、どのモデルもほぼ実験 結果を再現可能だが、重陽子生成に関して は、コアレッセンス模型が組み込まれていな いJAMモデルは大幅に過小評価してしまう ことが分かる。また、INC-ELFの重陽子生 成断面積が高エネルギー側で高いのは、複合 粒子のノックアウト過程も考慮しているため である。

PHITS2.52では、モデルの計算時間や汎用 性を検討した結果、中間エネルギーの陽子・ 中性子・π粒子・重陽子・三重陽子・³He・ α粒子入射反応に対する初期設定モデルとし てINCLを採用することとした。これらの改 良は、原子力機構とCEA及び原子力機構と九 州大学の共同研究による成果である。

2.2 統計マルチフラグメンテーションモデ ルの組込

PHITSでは、JQMD、JAM、INCLなど各 核子の挙動を運動力学的に扱う動的過程モデ ルと、動的過程を経て平衡状態に達した原子

 図 2 JAM、INCL、INC-ELFモデルでそれぞれ計算した²⁰⁸Pb- 陽子(258MeV)反応の中性子生成断面積 (左図)及び⁵⁵Fe- 陽子(558MeV)反応の重陽子生成断面積(右図)

核からの核子放出や核分裂など統計学的に扱 う静的過程モデルを組み合わせて核反応を模 擬する。この静的過程モデルには、通常、蒸 発モデルGEM [14] が用いられる。しかし GEMは、核分裂は扱えるものの、高い励起エ ネルギーの場合に原子核が3つ以上に分裂す るマルチフラグメンテーション反応を模擬で きず、重核からの軽核生成反応断面積を過小 評価してしまう問題点が指摘されていた [15]。

そこで、PHITS2.52では、その静的過程シ ミュレーションに統計マルチフラグメンテー ションモデルSMM [16] を新たに組み込み、 原子核が3つ以上に分裂する反応を模擬でき るようにした。具体的には、動的過程直後の 残留核励起エネルギーが2MeV/u以上の場 合、SMMを起動して数多くある分裂パター ンからエントロピー的に取り得る状態をモン テカルロ法により決定し、分裂後の各残留核 の蒸発過程をGEMで再現するよう変更した。 これにより、PHITS2.24で見られた一部の残 留核収率に対する過小評価が改善された(図 3参照)。なお、SMMを導入することにより 計算時間が従来の数倍程度になる場合がある ため、PHITS2.52の初期設定ではSMMを起 動しない設定とした。

2.3 巨大共鳴反応断面積の改訂

光子のエネルギーが中性子(もしくは陽子) 放出のしきい値エネルギー(約8MeV)を超 えると、光核反応が起きる。光核反応には、 光子が原子核全体と共鳴する巨大共鳴反応 (8~25MeV)、核内にある仮想的な重陽子 と 共 鳴 す る 準 重 陽 子 崩 壊 反 応 (25~ 150MeV)、核内の核子単体と共鳴して π 粒子 などを放出する核子共鳴反応 (150MeV~) がある (括弧内は、支配的な光子エネルギ ー)。PHITS2.24は、これらの反応機構の中 で巨大共鳴のみ扱うことができたが、その反 応断面積は、単純なローレンツカーブで表現 されており、その精度に関する検証は十分に 行われていなかった。

そこでPHITS2.52では、光核反応断面積と して、評価済核データライブラリ JENDL/PD-2004 [17] に格納された値を採 用した。例として、PHITS2.24及び2.52で採 用した⁶Liと¹⁸⁴Wに対する光核反応断面積を 図4に示す。図より、。Liに対しては新旧 PHITSの光核反応断面積が全エネルギー領 域で大きく異なることが分かる。これは、⁶Li など軽いターゲットに対する光核反応断面積 が単純なローレンツカーブでは再現できない ためである。一方、¹⁸⁴Wに対しては、低エネ ルギー側ではほぼ一致するものの25MeV以 上の高エネルギー領域で新旧PHITSの光核 反応断面積が異なる。これは、PHITS2.52で 採用した核データライブラリJENDL/PD-2004が準重陽子崩壊反応による寄与も含んで いるためである。ただし、その反応機構その ものはまだ組み込まれていないため、

図3 NatPb(C、x)フラグメンテーション反応による²⁴Naと⁷⁵Se生成断面積の入射エネルギー依存性

図 4 PHITS2.24及び2.52で採用した⁶Liと¹⁸⁴Wに対する光核反応断面積

PHITS2.52を用いても高エネルギー光核反応を精度よく再現することはできない。今後、準重陽子崩壊、核子共鳴反応機構を順次、PHITSに組み込んでいく予定である。

2.4 新しい反応断面積計算モデルの組込

PHITS2.24には、核子-原子核及び原子核-原子核反応断面積を計算するモデルとして、 Pearlstein-Niitaの式、Shenの式、NASAの 式などが組み込まれている。これらに加え、 PHITS2.52では、Kurotama模型 [18] を組み 込んだ。例として、NASAの式とKurotama 模型で計算した¹²C-¹²C反応断面積の入射エネ ルギー依存性を図5に示す。図より、 Kurotama模型は、粒子線治療で用いられる 数100MeV/uエネルギー領域において、 NASAモデルよりも実験値の再現性が良いこ とが分かる。ただし、初期設定で使うモデル は、PHITS2.52でもPHITS2.24と同じく Pearlstein-Niitaの式(核子-原子核)とNASA の式(核子-核子)とした。本改良は、小濱 洋央氏(理研)、飯田圭氏(高知大学)、親松 和浩氏(愛知淑徳大学)らとの共同開発によ る成果である。

2.5 メモリ共有型並列計算機能の導入

並列計算には、MPIを使ったメモリ分散型 並列と、OpenMPを使ったメモリ共有型並列

図 5 NASAの式とKurotama0で計算した¹²C-¹²C反応断面積の入射エネルギー依存性。Kurotama0と は、高エネルギー側で有効なKurotama模型に基づく公式[18]を、低エネルギー側でNASAの式 により補完したものである。

がある。PHITS2.24では、メモリ分散型並列 のみ対応していた。しかし、メモリ分散型並 列計算では、並列プロセス毎にシングル計算 と同等のメモリを使用する(8並列で8倍の メモリ領域を使用する)ため、メモリ不足の 問題から高分解能ボクセルファントムなど巨 大なメモリを必要とする体系を並列計算で処 理できない欠点があった。

そこで、PHITS2.52では、メモリ共有型並 列計算にも適応可能となるようソースコード を抜本的に改良した。また、メモリ分散型並 列とメモリ共有型並列を組み合わせたハイブ リッド並列計算も可能とした。その結果、ハ イブリッド並列を基本とする「京」などのス ーパーコンピュータのみならず、MPIプロト コルをインストールしていない汎用のPCで も並列計算が可能となった。例として、メモ リ共有型並列計算でコア数を1~8まで増や したときのスケーラビリティ (コア数が1と Nのときの計算時間比: t_1/t_N)を図6に示す。 図より、コア数を増やしてもスケーラビリ ティは理想値の90%以上を保持し、コア数に ほぼ反比例して計算時間が短縮できることが 分かる。ただし、コア数が1の場合のメモリ 共有型並列計算の計算時間は、シングル計算 と比べて約2倍となるため、コア数が2以下 の場合は、メモリ共有型並列計算を実行する メリットはほとんどない。

本成果は、次世代生命体統合シミュレー ションソフトウェアの研究開発プロジェク ト、理化学研究所戦略的研究展開事業、理科 学研究所基礎科学特別研究員制度の支援に よって得られたものであり、原子力機構と理 化学研究所の共同研究による成果である。ま た、開発において「京」コンピュータ試験利 用および理研情報基盤センター RICCシステ ムを利用した。

2.6 統計誤差計算方法の改良と再開始計算 機能の追加

統計誤差は、モンテカルロ計算精度を検証 する上で重要な指標であるが、PHITS2.24で は、誤った計算方法で統計誤差を導出してい た。そこでPHITS2.52では、検出器の応答関 数などヒストリー間の分散を計算するタリー では相対標準誤差を、それ以外のタリーでは 各ヒストリーもしくは各バッチ計算結果の相 対標準偏差を統計誤差として出力するように 全てのタリーを改良した。例として、PHITS の2次元プロットで出力した粒子フラックス

図6 メモリ共有型並列 (OpenMP) 計算でコア数を1~8まで増やしたときのスケーラビリティ (コ ア数が1とNのときの計算時間比: t_i/t_N)

とその統計誤差分布を図7に示す。図より、 フラックスの小さい領域(左図寒色系)では、 その相対誤差が大きい(右図暖色系)ことが 分かる。このように統計誤差を可視化するこ とにより、統計の足りない領域が直感的に分 かるようになり、より効果的な計算が可能と なった。

また、一度終了した計算からタリー出力や 初期乱数を読み込んで計算を再開する機能を 追加した。この機能を用いれば、あらかじめ 設定していたヒストリー数やバッチ数では統 計が十分でなかった場合に、これまでの計算 結果を無駄にすることなく、より統計精度の よい結果を得ることができる。ただし、古い バージョンのPHITSで計算した結果からの 再開始計算はできない。これらの改良は、原 子力機構・システム計算科学センター・原子 力コード高速化作業の一環として、(株)富士 通システムズ・イーストの大日向大地氏らと 実施した共同開発の成果である。

2.7 残留放射能計算機能の追加

残留放射能の時間変化の計算は、加速器の 遮へい設計や粒子線治療の医療従事者の2次 被ばくなどを評価する際、不可欠となる。そ のためには、照射直後に生成された放射性残 留核の収率のみならず、その時間減衰を評価 する必要がある。しかし、PHITS2.24では照 射直後の残留核収率計算のみ可能で、その時 間変化を追跡するためには、ユーザー自身が その計算結果を基にDCHAIN-SP [19] など 残留放射能計算コードの入力ファイルを作成 する必要があった。

そこで、PHITS2.52では新たなタリー「tdchain]を導入し、照射時間や照射後の冷却 時間などを指定すれば、PHITSから DCHAIN-SP用の入力ファイルを直接出力で きるようにした。また、PHITSとの接続計算 用に調整したDCHAIN-SPやそれを実行する ためのバッチファイルを整備し、PHITS2.52 パッケージに組み込んだ。これらの成果によ り、PHITSとDCHAIN-SPを用いて簡単に残 留放射能の時間変化を計算可能となった。例 として、PHITS2.52パッケージを用いて計算 した150MeV陽子を水ファントムに6分間で 5Gv照射したときの残留放射能の時間変化 を図8に示す。図より、照射直後は¹⁴0や¹⁵0 が多数生成されているが、数10分後にはそれ らはほとんど崩壊し、¹¹Cや¹³Nのみが残るこ とが分かる。今後は、PHITSとDCHAIN-SP をソースレベルで統合し、一度計算した残留 放射能分布からその周辺の被ばく線量を PHITSで再計算する機能を開発する予定で ある。

図7 PHITSの2次元プロットで出力したWターゲットから発生するX線フラックス(左図)とその統 計誤差分布(右図)

図8 PHITS2.52パッケージを用いて計算した150MeV陽子を水ファントムに6分間で5Gy照射した ときの残留放射能の時間変化

2.8 電子・光子輸送計算アルゴリズムの改良

PHITS2.24では、電子のカットオフエネル ギーを低くすると、高エネルギー電子の挙動 が変化してしまう問題点があった。これは、 PHITS2.24で採用している電子の阻止能が カットオフエネルギーに依らず一定のため、 大量の2次電子を放出する高エネルギー電子 に対して阻止能と2次電子放出によるエネル ギー損失の重複が起こり、その飛程が短く なっていたためである。そこで、PHITS2.52 では、電子の阻止能をカットオフエネルギー に依存して変化させ、上記重複が起きないよ うに改良した。

また、PHITS2.24では、光電効果やコンプ トン散乱が起きた際、各イベントでエネルギ ーが保存しない問題点があった。そこで、 PHITS2.52では、中性子や陽子の場合と同じ く、光子や電子の輸送計算でもイベントジェ ネレータとなるよう改良した。これにより、 付与エネルギーのヒストリー間での分散を正 しく計算できるようになった。例として、 PHITS2.24とPHITS2.52で計算した667keV 光子入射に対するCsI検出器の応答関数を図 9に示す。PHITS2.24ではエネルギー保存 が成立しないため光電ピークの幅が広くなっ ていたが、PHITS2.52ではその問題が解決さ れている。

2.9 核データライブラリの改訂

PHITSで低エネルギー中性子、光子及び電 子を輸送するためにはデータライブラリが必 要となる。しかしPHITS2.24パッケージに は、JENDL-4.0[20]に基づいて整備した中 性子に対する核データライブラリしか付録さ れておらず、光子や電子に対する原子データ ライブラリは含まれていなかった。そこで、 JENDL-4.0及びEEDL [21]を元に光子-原 子及び電子-原子相互作用ライブラリをそれ ぞれ整備し、PHITS2.52パッケージに付録し た。また、中性子ライブラリに関しては、一 部の核種でKerma係数が異常に大きい問題 があったため、その評価方法を改訂した。さ

図 9 PHITS2.24とPHITS2.52で計算した667keV光子入射に対するCsI検出器の応答関数

らに、水など15物質に対して熱中性子散乱則 S(α 、 β)データを収納した。

例として、新旧ライブラリ及びENDF/V-II.1[22] に格納された³⁵Clに対する中性子 Kerma係数を図10に示す。図より、古いライ ブラリは、低エネルギー中性子に対する Kerma係数を新しいライブラリやENDF/B-VII.1と比較して約1000倍も過大評価してい たことが分かる。古いライブラリを使って中 性子による人体内の被ばく線量を計算した場 合、人体に0.1%程度しか含まれない³⁵Clの有 無により結果が大きく変わってしまう問題が あったが、新しいライブラリを使えば、この ような問題は生じない。ただし、このような 大きな変化があった核種は希であり、ほとん どの核種に対しては、新旧ライブラリでほぼ 同等の結果を与える。

3 まとめと今後の予定

PHITS2.52は、PHITS2.24から様々な面 が改良され、放射線挙動解析に関してこれ までにないパワフルなツールとなっている。 既にPHITSユーザー登録済みの方は、原子 カコードセンターを介して旧バージョンを入 手した方は原子力コードセンター (nucis@tokai.rist.or.jp)に、PHITS講習会 を介して入手した方はPHITS事務局(phitsoffice@jaea.go.jp)にリクエストを出すこと により、無償で最新版を入手可能である。ま た、新規ユーザーは、従来と同じく、国内で

図10 新旧ライブラリ及びENDF/V-II.1[22]に格納された³⁵Clに対する中性子Kerma係数

あれば原子力コードセンターにリクエストを 出すか、PHITS講習会に参加することにより 入手可能である。

今後は、まず、電磁カスケード輸送計算コ ードEGS5[23]との統合を最優先事項として開 発を進める予定である。既にPHITS2.52 パッケージには、暫定版としてPHITSと EGS5を統合した実行ファイルが含まれてい るが、暫定版は、メモリ共有型並列計算や再 開始計算機能などPHITS2.52から組み込ま れた様々な機能に未対応である。また、Li (d、n) 反応など工学的に重要な核反応を再 現するため、歪曲波ボルン近似DWBAと核内 カスケード模型を組み合わせた新たな核反応 モデルや、JENDL高エネルギーファイル [24] など陽子や高エネルギー中性子に対す る核データにも対応したイベントジェネレー タモードの開発なども考えている。その他、 できるだけユーザーのニーズに合った改良を していきたいと考えているので、改良の要望 やバク情報などがあれば、引き続き積極的に PHITS事務局もしくはPHITSユーザーコ ミュニティサイト [25] まで連絡いただける ようお願いしたい。PHITS開発チーム一同、 ユーザー満足度No.1コードを目指し、ユー ザーとともにコードを成長させていきたいと 考えているので、今後とも末永くPHITSの発 展にご協力いただければ幸いである。

参考文献

- [1] K. Niita et al., JAERI-Data/Code 2001-007 (2001)
- [2] http://www.rist.or.jp/nucis/
- [3] http://www.oecd-nea.org/tools/abstract/ detail/nea-1857/
- [4] http://www rsicc.ornl.gov/codes/ccc/ ccc7/ccc-778.html
- [5] http://phits.jaea.go.jp/indexj.html
- [6] K. Niita et al., JAEA-Data/Code 2010-022 (2010)

- [7] K. Niita et al., Prog. Nucl. Sci. Technol. 1, 1-6, (2011)
- [8] K. Niita et al., Phys. Rev. C52, 2620 (1995)
- [9] Y. Nara et al., Phys. Rev. C61, 024901 (1990)
- [10] H. Takada et al., JAERI-Data/Code 98-005 (1998).
- [11] 岩瀬広、核データニュース、96、9-17 (2010)
- [12] J. Cugnon et al., J. Korean Phys. Soc. 59, 955 (2011)
- [13] Y. Sawada et al., Nucl. Instr. Meth. B 291, 38-44 (2012)
- [14] S. Furihata et al., Nucl. Instr. Meth. B 171, 251-258 (2000)
- [15] T. Ogawa et al., Prog. Nucl. Sci. Technol. in press.
- [16] J.P. Bondorf et al., Physics Reports, 257, 133 (1995)
- [17] http://wwwndc.jaea.go.jp/ftpnd/jendl/ jendl-pd-2004.html
- [18] K. Iida et al., J. Phys. Soc. Japan 76, 044201 (2007)
- [19] T. Kai et al., JAERI-Data/Code 2001-016 (2001)
- [20] http://wwwndc.jaea.go.jp/jendl/j40/ J40_J.html
- [21] S. T. Perkins et al., Lawrence Livermore National Lab. UCRL-50400 Vol. 31 (1991)
- [22] http://www.nndc.bnl.gov/endf/b7.1/
- [23] http://rcwww.kek.jp/research/egs/
- [24] http://wwwndc.jaea.go.jp/ftpnd/jendl/ jendl-he-2007.html
- [25] http://www.facebook.com/ phitscommunity
- [26] Y. Iwamoto et al., Nucl. Instr. Meth. B 274, 57-64 (2012)